Remote Detection of Trace Effluents Using Resonance Raman Spectroscopy: Field Results and Evaluation
نویسنده
چکیده
Resonance Raman spectroscopy (RRS) possesses many characteristics that are important for detecting, identifying and monitoring chemical effluents. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. Under resonance enhancement, the Raman scattering cross-sections have been observed to increase up to 6 orders of magnitude above the normal scattering cross-sections, thereby providing the practical basis for a remote chemical sensor. Some of the other advantages that a Raman sensor possesses are: (1) very high selectivity (chemical specific fingerprints), (2) independence of the spectral fingerprint on the excitation wavelength (ability to monitor in the solar blind region), (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid or solutions), (5) no absolute caLibration is necessary because all Raman signals observed from a given species can be compared with the Raman signal for N2, whose concentration is known very accurately, and (6) insensitivity of the Raman signature to environmental conditions (no quenching, or interference from water vapor). In this presentation, the technology of resonance Raman spectroscopy as applied to the detection of narcotics production activities will be presented along with some recent experimental results.
منابع مشابه
روشهای طیفسنجی در آنالیز همزمان مواد منفجره
Simultaneous analysis of explosives to identify, determine the purity and eliminate environmental pollution requires rapid, simple and cheap methods. Spectrophotometries method (UV-Vis), high-field proton nuclear magnetic resonance (1H-NMR), Raman spectroscopy and near infrared (NIR) are common methods that are applicable in two ways of direct and indirect in simultaneous analysis. In this poin...
متن کاملDetection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملHighly Selective Standoff Detection and Imaging of Trace Chemicals in a Complex Background using Single-Beam Coherent Anti-Stokes Raman Spectroscopy
A sensitive, non-destructive and highly selective method of standoff detection using coherent anti-Stokes Raman spectroscopy (CARS) is presented. The approach uses a single amplified femtosecond laser to generate high resolution (<10cm) multiplex CARS spectra encompassing the fingerprint region (400cm – 2500cm) at standoff distance. Quantitative studies of this method result in detection of 2μg...
متن کاملUniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy.
Surface-enhanced Raman spectroscopy (SERS) benefits from the enhanced electromagnetic field of the localized surface plasmon resonance effect of metallic (especially coinage metals) nanoparticles or nanostructures. The detection sensitivity and reproducibility of SERS measurement appear to be the two critical issues in SERS. To solve the problem associated with traditional nanoparticle aggregat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007